Abstraction-based methods for the Verification of Neural Networks with NeVer2

Dario Guidotti, **Stefano Demarchi**, **Luca Pulina**, **Armando Tacchella**

DIBRIS DIPARTIMENTO Università DIBRIS DIPARTIMENTO
di Genova DI INFORMATICA, BIOINGEGNERIA, ROBOTICA E INGÉGNERIA DEI SISTÉMI

Contents

[Introduction](#page-2-0)

2 [Preliminaries](#page-6-0)

[Abstract methods](#page-28-0)

5 [Running example](#page-49-0)

Contents

[Introduction](#page-2-0)

[Preliminaries](#page-6-0)

[Neural Networks Verification](#page-12-0)

[Abstract methods](#page-28-0)

5 [Running example](#page-49-0)

Introduction

Context

The following slides explain the methodologies that are implemented in NeVer2 — our verification tool

Introduction

Context

The following slides explain the methodologies that are implemented in NeVer2 — our verification tool

Motivation

Verification of neural networks is a more and more important topic involving scalability and complexity problems

Introduction

Context

The following slides explain the methodologies that are implemented in NeVer2 — our verification tool

Motivation

Verification of neural networks is a more and more important topic involving scalability and complexity problems

Contribution

We present our methodology based on abstract interpretation for the verification of feed-forward neural networks with ReLU activation functions

Contents

[Introduction](#page-2-0)

2 [Preliminaries](#page-6-0)

[Neural Networks Verification](#page-12-0)

[Abstract methods](#page-28-0)

5 [Running example](#page-49-0)

Vectors

n-dimensional *vectors* of real numbers $x \in \mathbb{R}^n$ — also *points* or *samples* noted lowercase, e.g., *x*, *y*, *z*

Vectors

n-dimensional *vectors* of real numbers $x \in \mathbb{R}^n$ — also *points* or *samples* noted lowercase, e.g., *x*, *y*, *z*

Sets

Sets of vectors $X \subseteq \mathbb{R}^n$ noted uppercase, e.g., X, Y, Z

Vectors

n-dimensional *vectors* of real numbers $x \in \mathbb{R}^n$ — also *points* or *samples* noted lowercase, e.g., *x*, *y*, *z*

Sets

Sets of vectors $X \subseteq \mathbb{R}^n$ noted uppercase, e.g., X, Y, Z

Set properties

- A set *X* is *bounded* if there exists $r \in \mathbb{R}, r > 0$ such that $\forall x, y \in X$ || $x - y$ || < *r*
- A set X is *open* if for every point $x \in X$ there exist $\epsilon_x > 0$ such that $y \in \mathbb{R}^n$ belongs to *X* if $||x - y|| < \epsilon_x$

Set properties (seq.)

- The complement of an open set is *closed* the one that includes its boundary. Closed and bounded sets are *compact*
- A set *X* is *convex* if for any $x, y \in X$ also $z \in X$ for each $z = (1 \lambda)x + \lambda y$ with $\lambda \in [0, 1]$

Set properties (seq.)

- The complement of an open set is *closed* the one that includes its boundary. Closed and bounded sets are *compact*
- A set *X* is *convex* if for any $x, y \in X$ also $z \in X$ for each $z = (1 \lambda)x + \lambda y$ with $\lambda \in [0, 1]$

Convex hull

Given a non-empty set X, the smallest convex set $C(X)$ containing X is the *convex hull* of *X*

Contents

[Introduction](#page-2-0)

[Preliminaries](#page-6-0)

[Abstract methods](#page-28-0)

5 [Running example](#page-49-0)

Feed-forward neural network

A function $\nu:\mathbb{R}^n\to\mathbb{R}^m$ obtained through the composition of ρ functions $f_1: \mathbb{R}^n \rightarrow \mathbb{R}^{n_1}, ..., f_p: \mathbb{R}^{n_{p-1}} \rightarrow \mathbb{R}^m$ called *layers*

Feed-forward neural network

A function $\nu:\mathbb{R}^n\to\mathbb{R}^m$ obtained through the composition of ρ functions $f_1: \mathbb{R}^n \rightarrow \mathbb{R}^{n_1}, ..., f_p: \mathbb{R}^{n_{p-1}} \rightarrow \mathbb{R}^m$ called *layers*

Layers

Generally, layers are a cascade of a weighted sum with the addition of a bias (linear *affine mapping*) and the application of an *activation function* $f(x) = (\varphi_1(x_1), ..., \varphi_m(x_m))$ with $\varphi_i: \mathbb{R}^m \to \mathbb{R}^m$

Layers

Generally, layers are a cascade of a weighted sum with the addition of a bias (linear *affine mapping*) and the application of an *activation function* $f(x) = (\varphi_1(x_1), ..., \varphi_m(x_m))$ with $\varphi_i: \mathbb{R}^m \to \mathbb{R}^m$

ReLU (Rectified Linear Unit) activation

ReLU(*z*_{*j*}) = $max\{0, z_i\}$

Filters anything below zero, and leaves unchanged anything above

ReLU (Rectified Linear Unit) activation

 $ReLU(z_i) = max\{0, z_i\}$ Filters anything below zero, and leaves unchanged anything above

Sigmoid (logistic) activation

 $\sigma(\mathsf{z}_j) = \frac{1}{(1+e^{-\mathsf{z}_j})}$ A continuous function bounded between 0 and 1

Sigmoid (logistic) activation

 $\sigma(\mathsf{z}_j) = \frac{1}{(1+e^{-\mathsf{z}_j})}$ A continuous function bounded between 0 and 1

Application

The *classification* task assigns every input vector *z* ∈ \mathbb{R}^n one out of *m* labels. The *regression* task approximates a functional mapping from \mathbb{R}^n to \mathbb{R}^m

Application

The *classification* task assigns every input vector *z* ∈ \mathbb{R}^n one out of *m* labels. The *regression* task approximates a functional mapping from \mathbb{R}^n to \mathbb{R}^m

Objective

Verify algorithmically that the NN complies to some *post-conditions* on the outputs if some *pre-conditions* on the input are met

Objective

Verify algorithmically that the NN complies to some *post-conditions* on the outputs if some *pre-conditions* on the input are met

Objective

Verify algorithmically that the NN complies to some *post-conditions* on the outputs if some *pre-conditions* on the input are met

Assumptions

- Input $I \subset \mathbb{R}^n$ is bounded
- Output $O \subset \mathbb{R}^m$ is also bounded
	- \blacktriangleright Affine transformations of bounded sets are bounded sets
	- \blacksquare *f*(*z*) = *ReLU*(*z*) is piecewise affine
	- $\mathbf{f}(z) = \sigma(z)$ bounds the output on [0, 1]

Assumptions

- Input $I \subset \mathbb{R}^n$ is bounded
- Output $O \subset \mathbb{R}^m$ is also bounded
	- Affine transformations of bounded sets are bounded sets
	- $f(z) = ReLU(z)$ is piecewise affine
	- $\mathbf{f}(z) = \sigma(z)$ bounds the output on [0, 1]

Conclusion

Pre and *post*-conditions represent *n*-dimensional space regions in which inputs and outputs should be contained

Contents

[Introduction](#page-2-0)

[Preliminaries](#page-6-0)

[Neural Networks Verification](#page-12-0)

[Abstract methods](#page-28-0)

5 [Running example](#page-49-0)

Abstract methods

Abstract domains

We abstract the network behavior by considering the transformation on the input domain, considering the abstract domain $\langle \R^n \rangle \subset 2^{\R^n}$ of polytopes in \R^n to abstract bounded sets into polytopes

Abstract methods

Abstract domains

We abstract the network behavior by considering the transformation on the input domain, considering the abstract domain $\langle \R^n \rangle \subset 2^{\R^n}$ of polytopes in \R^n to abstract bounded sets into polytopes

A concrete network operates a point-to-point mapping

Abstract methods

Abstract domains

We abstract the network behavior by considering the transformation on the input domain, considering the abstract domain $\langle \R^n \rangle \subset 2^{\R^n}$ of polytopes in \R^n to abstract bounded sets into polytopes

An abstract network maps space regions

Abstraction

Given a bounded set $X\subset \mathbb{R}^n$ an abstraction is a function $\alpha: 2^{\mathbb{R}^n}\to \langle \mathbb{R}^n\rangle$ that maps *X* to a polytope *P* such that $C(X) \subseteq P$

Abstraction

Given a bounded set $X\subset \mathbb{R}^n$ an abstraction is a function $\alpha: 2^{\mathbb{R}^n}\to \langle \mathbb{R}^n\rangle$ that maps *X* to a polytope *P* such that $C(X) \subseteq P$

Concretization

Given a polytope $P \in \langle \mathbb{R}^n \rangle$ a concretization is a function $\gamma : \langle \mathbb{R}^n \rangle \to 2^{\mathbb{R}^n}$ that maps *P* to the set of points contained in it

Abstraction

Given a bounded set $X\subset \mathbb{R}^n$ an abstraction is a function $\alpha: 2^{\mathbb{R}^n}\to \langle \mathbb{R}^n\rangle$ that maps X to a polytope P such that $C(X) \subseteq P$

Concretization

Given a polytope $P \in \langle \mathbb{R}^n \rangle$ a concretization is a function $\gamma : \langle \mathbb{R}^n \rangle \to 2^{\mathbb{R}^n}$ that maps *P* to the set of points contained in it

Consistent abstraction

Given a mapping $\nu:\R^n\to\R^m$, a mapping $\tilde\nu:\langle\R^n\rangle\to\langle\R^m\rangle$, an abstraction α and a concretization γ , $\tilde{\nu}$ is a consistent abstraction of ν over an input set X exactly when $\{\nu(x)|x \in X\} \subseteq \gamma(\tilde{\nu}(\alpha(X)))$

Consistent abstraction (example)

Given a mapping $\nu:\R^n\to\R^m$, a mapping $\tilde\nu:\langle\R^n\rangle\to\langle\R^m\rangle$, an abstraction α and a concretization γ , $\tilde{\nu}$ is a consistent abstraction of ν over an input set X exactly when $\{\nu(x)|x \in X\} \subseteq \gamma(\tilde{\nu}(\alpha(X)))$

Convex approximation

There are different cases for the input set $X \subset \mathbb{R}$

Convex approximation

There are different cases for the input set $X \subset \mathbb{R}$

X is already convex and matches the enclosing polytope

Convex approximation

There are different cases for the input set $X \subset \mathbb{R}$

X is convex but not linear, and is over-approximated by an octagon

Convex approximation

There are different cases for the input set $X \subset \mathbb{R}$

X is not convex, therefore is divided in two polytopes such that their union matches the original one

Generalized star set

Given a *basis matrix V* ∈ R *ⁿ*×*m*, a point *c* ∈ R *ⁿ* called *center*, and a *predicate* $R: \mathbb{R}^m \to \{\top, \bot\}$, a generalized star set (or just *star*) is a tuple $\Theta = (c, V, R)$. The set of points represented by the star is

$$
\llbracket \Theta \rrbracket \equiv \{ z \in \mathbb{R}^n \mid z = Vx + c \text{ such that } R(x_1, \ldots, x_m) = \top \}
$$

Generalized star set

Given a *basis matrix V* ∈ R *ⁿ*×*m*, a point *c* ∈ R *ⁿ* called *center*, and a *predicate* $R: \mathbb{R}^m \to \{\top, \bot\}$, a generalized star set (or just *star*) is a tuple $\Theta = (c, V, R)$. The set of points represented by the star is

$$
\llbracket \Theta \rrbracket \equiv \{ z \in \mathbb{R}^n \mid z = Vx + c \text{ such that } R(x_1, \ldots, x_m) = \top \}
$$

In practice

We consider stars where the predicate represents a polytope, i.e., R : $Cx < d$. This polytope in *x* depends on the basis matrix *V*

Star

$$
\llbracket \Theta \rrbracket \equiv \{ z \in \mathbb{R}^2 \mid z = Vx + c \text{ such that } Cx \leq d \}
$$

Let
$$
x = \{x_0, x_1\}
$$
 and $Cx \le d = \begin{cases} x_0 \le 1 \\ -x_0 \le 1 \\ x_1 \le 1 \\ -x_1 \le 1 \end{cases}$

Star

$$
\llbracket \Theta \rrbracket \equiv \{ z \in \mathbb{R}^2 \mid z = Vx + c \text{ such that } Cx \leq d \}
$$

Let
$$
x = \{x_0, x_1\}
$$
 and $Cx \le d = \begin{cases} x_0 \le 1 \\ -x_0 \le 1 \\ x_1 \le 1 \\ -x_1 \le 1 \end{cases}$

Predicate

Predicted matrix
$$
C = \begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}
$$
 and bias $d = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$

Identity basis

Basis matrix
$$
V_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
$$
, center $c = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Identity basis

Basis matrix
$$
V_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
$$
, center $c = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Different basis

Basis matrix
$$
V_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}
$$
, center $c = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$

Activation functions abstraction

How to propagate the abstraction?

The different layers of a NN transform the abstract star

- Linear (*Fully Connected*) layers perform affine transformations
- Activation layers?

Activation functions abstraction

How to propagate the abstraction?

The different layers of a NN transform the abstract star

- Linear (*Fully Connected*) layers perform affine transformations
- Activation layers?

ReLU

Given the ReLU piecewise nature, we can either split the computation between the negative part and the positive part — for each dimension! — or compute an abstract over-approximation

Activation functions abstraction

How to propagate the abstraction?

The different layers of a NN transform the abstract star

- Linear (*Fully Connected*) layers perform affine transformations
- Activation layers?

ReLU

Given the ReLU piecewise nature, we can either split the computation between the negative part and the positive part — for each dimension! — or compute an abstract over-approximation

Sigmoid

On the other hand, the logistic function can only be over-approximated by an appropriate abstraction

Contents

[Introduction](#page-2-0)

[Preliminaries](#page-6-0)

[Neural Networks Verification](#page-12-0)

[Abstract methods](#page-28-0)

5 [Running example](#page-49-0)

A simple 2D NN

We consider a simple bi-dimensional Fully Connected/ReLU network with two hidden layers of two neurons each

A simple 2D NN

We consider a simple bi-dimensional Fully Connected/ReLU network with two hidden layers of two neurons each

Input Layer $\in \mathbb{R}^2$

Hidden Laver $\in \mathbb{R}^2$

Hidden Layer $\in \mathbb{R}^2$

Output Laver $\in \mathbb{R}^2$

Fully Connected behavior

The linear (fully connected) layers transform the input set by means of shift, rotation and scale operations

Fully Connected behavior

The linear (fully connected) layers transform the input set by means of shift, rotation and scale operations

ReLU behavior

Given the properties of the input set the ReLU behaves differently: if $a > 0$, i.e., the set is all positive then the ReLU is the identity function, whereas if $b < 0$ the input is zeroed; when $a < 0 < b$ we can either split the results or over-approximate

ReLU behavior

Given the properties of the input set the ReLU behaves differently: if $a > 0$, i.e., the set is all positive then the ReLU is the identity function, whereas if $b < 0$ the input is zeroed; when $a < 0 < b$ we can either split the results or over-approximate

Bounds evaluation

The lower and upper bounds *ub^j* , *lb^j* of the star along its *j*-th dimension are computed with a linear-programming problem

$$
max/min{zj = V[j, :]x + c[j]} \quad \text{(star basis)}
$$

s.t.

$$
Cx \le d \quad \text{(star predicates)}
$$

Bounds evaluation

The lower and upper bounds *ub^j* , *lb^j* of the star along its *j*-th dimension are computed with a linear-programming problem

$$
max/min{zj = V[j, :]x + c[j]}
$$
 (star basis)
s.t.
Cx \leq d (star predicates)

Scalability issues

The linear programming problem scales with the dimension of the layers \rightarrow bottleneck computing the bounds of large scale networks. In addition, abstracting ReLU layers introduces further parameters

Abstract input

Let us consider again the star presented before as the network input for our example

Abstract input

Let us consider again the star presented before as the network input for our example

(a) Graphical Representation as Convex Hull

(b) Numerical Representation of the input starset.

 $Input \equiv \{z \in \mathbb{R}^n \mid z = \mathbb{I}x \text{ such that } Cx \leq d\}$

 $-x_0 \leq 1$

 $-x_1 \leq 1$

 $x_1 \leq 1$

where $Cx \leq d$ is $x_0 \leq 1$

Affine transformation

Layer 1 - Fully Connected

The first affine transformation with $W =$ affecting only the basis matrix

$$
\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$
 transforms the input star by

Affine transformation

Layer 1 - Fully Connected

The first affine transformation with
$$
W = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}
$$
, $b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ transforms the input star by affecting only the basis matrix

$$
\hat{V}_{FC} = \mathsf{WV} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}
$$
\n
$$
\hat{c}_{FC} = \mathsf{Wc} + b = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$
\n
$$
\sum_{-2}^{N} \sum_{-1}^{0} \sum_{-1}^{1} \sum_{\substack{2, 1 \\ 2, 1 \end{bmatrix} \sum_{2, 1}^{2} \sum_{\substack{1, 2 \\ 3, 4}}^{3} \sum_{\substack{1, 2 \\ 2, 1 \end{bmatrix} \sum_{\substack{2, 1 \\ 2, 3 \end{bmatrix} \sum_{\substack{2, 1 \\ 2, 1 \
$$

ReLU abstraction

The fine abstraction of the ReLU function is non-linear, so whenever *lb_j* $<$ 0 $<$ *ub_j* the network splits as if the inputs were two: one less than 0 and another greater than 0

ReLU abstraction

The fine abstraction of the ReLU function is non-linear, so whenever *lb_j* $<$ 0 $<$ *ub_j* the network splits as if the inputs were two: one less than 0 and another greater than 0

 $-3 -3$ -2 -1

Split along z_1

Along the z_1 axis the input polytope collapses on the negative part and remains unchanged on the positive one

Split along z_1

Along the z_1 axis the input polytope collapses on the negative part and remains unchanged on the positive one

Split along z_1

This corresponds to imposing $z_1 \leq 0$ in the predicates and $z_1 = 0$ in the basis for the negative star, and $z_1 > 0$ in the predicates for the positive one

Split along z_1

This corresponds to imposing $z_1 \leq 0$ in the predicates and $z_1 = 0$ in the basis for the negative star, and $z_1 > 0$ in the predicates for the positive one

$$
\begin{cases} z_1 \leq 0 \rightarrow x_0 + x_1 \leq 0 \\ V_{z_1^-} = \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix} \end{cases}
$$

Split along z_1

This corresponds to imposing $z_1 \leq 0$ in the predicates and $z_1 = 0$ in the basis for the negative star, and $z_1 > 0$ in the predicates for the positive one

$$
\begin{cases} z_1 \geq 0 \rightarrow -x_0 - x_1 \leq 0 \\ V_{z_1^+} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \end{cases}
$$

Split along z_2 (1)

Along the z_2 axis the result of the previous split either becomes a single point for the negative part $(z_1 -, z_2 -)$ or is cut $(z_1 -, z_2 +)$

Split along z_2 (2)

The same operation is performed on the positive output of the first split, with only $z_1 + z_2 +$ resulting in an actual polytope

Starset growth

The number of stars produced by the exact computation is exponential in the worst case, where each and every ReLU has to split
ReLU: exact computation

Starset growth

The number of stars produced by the exact computation is exponential in the worst case, where each and every ReLU has to split

Predicates growth

Each new star adds a constraint (row) in the predicates matrix and the bias vector

ReLU: exact computation

Starset growth

The number of stars produced by the exact computation is exponential in the worst case, where each and every ReLU has to split

Predicates growth

Each new star adds a constraint (row) in the predicates matrix and the bias vector

Degenerate stars

Even if the exact computation produced 4 stars out of one, three of them are degenerate, i.e., they don't carry useful information. To prove whether a star is degenerate or not could improve the algorithm, but is a difficult task

Neuron-level behaviour

We provide a coarse abstraction of the ReLU function by picturing a triangle limited by the star bounds. This approximation — minimal area — enforces a smaller error w.r.t. other techniques such as zonotopes and abstract domains

Neuron-level behaviour

We provide a coarse abstraction of the ReLU function by picturing a triangle limited by the star bounds. This approximation — minimal area — enforces a smaller error w.r.t. other techniques such as zonotopes and abstract domains

Neuron-level behaviour

We provide a coarse abstraction of the ReLU function by picturing a triangle limited by the star bounds. This approximation — minimal area — enforces a smaller error w.r.t. other techniques such as zonotopes and abstract domains

Star POV

From the Star point of view, we define an auxiliary variable x_{m+1} in order to express the three constraints of the triangle in terms of the predicate variables

Star POV

From the Star point of view, we define an auxiliary variable x_{m+1} in order to express the three constraints of the triangle in terms of the predicate variables

$$
x_{m+1} \ge 0
$$

\n
$$
x_{m+1} \ge V_j \mathbf{x} + c_j
$$

\n
$$
x_{m+1} \le ub_j \cdot \frac{V_j \mathbf{x} + c_j - lb_j}{ub_j - lb_j}
$$

If we reorder these constraints we can bring them in the format $C\mathbf{x} \leq \mathbf{d}$:

$$
-x_{m+1} \le 0
$$

$$
V_j \mathbf{x} - x_{m+1} \le -c_j
$$

$$
-\frac{ub_j}{ub_j - lb_j} V_j \mathbf{x} + x_{m+1} \le \frac{ub_j}{ub_j - lb_j}(c_j - lb_j)
$$

Star computation

The ReLU over-approximation introduces two variables and 6 constraints in the predicate matrix, requiring to solve a total of 4 LPs

Star computation

The ReLU over-approximation introduces two variables and 6 constraints in the predicate matrix, requiring to solve a total of 4 LPs

Starset growth

The approximation propagates always a single star in the whole network. On the other hand, the price is paid in the outer approximation

Starset growth

The approximation propagates always a single star in the whole network. On the other hand, the price is paid in the outer approximation

Predicates growth

Each neuron adds 3 constraints (rows) in the predicates matrix and the bias vector, as well as one extra variable. This impacts heavily on the LPs for bounds computation when the number of neurons is huge

Starset growth

The approximation propagates always a single star in the whole network. On the other hand, the price is paid in the outer approximation

Predicates growth

Each neuron adds 3 constraints (rows) in the predicates matrix and the bias vector, as well as one extra variable. This impacts heavily on the LPs for bounds computation when the number of neurons is huge

Approximation benefits

The complexity introduced by the approximation grows slower than the exact approach. The major benefit is that the approximate method guarantees a sound verification with the minimal area overhead