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Introduction

Context
The following slides explain the methodologies that are implemented in NeVer2
— our verification tool

Motivation
Verification of neural networks is a more and more important topic involving
scalability and complexity problems

Contribution
We present our methodology based on abstract interpretation for the verification of
feed-forward neural networks with ReLU activation functions
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Notation & definitions

Vectors
n-dimensional vectors of real numbers x ∈ Rn — also points or samples noted lowercase,
e.g., x , y , z

Sets
Sets of vectors X ⊆ Rn noted uppercase, e.g., X , Y , Z

Set properties
A set X is bounded if there exists r ∈ R, r > 0 such that
∀x , y ∈ X ||x − y || < r
A set X is open if for every point x ∈ X there exist εx > 0 such that y ∈ Rn belongs to
X if ||x − y || < εx
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Notation & definitions

Set properties (seq.)
The complement of an open set is closed — the one that includes its boundary.
Closed and bounded sets are compact
A set X is convex if for any x , y ∈ X also z ∈ X for each z = (1− λ)x + λy with
λ ∈ [0,1]

Convex hull
Given a non-empty set X , the smallest convex set C(X ) containing X is the
convex hull of X
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Neural Networks
Feed-forward neural network
A function ν : Rn → Rm obtained through the composition of p functions
f1 : Rn → Rn1 , ..., fp : Rnp−1 → Rm called layers

f1 f2 f3 f4

Y = f4(f3(f2(f1(X ))))
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Neural Networks

Layers
Generally, layers are a cascade of a weighted sum with the addition of a bias (linear affine
mapping) and the application of an activation function f (x) = (ϕ1(x1), ..., ϕm(xm)) with
ϕi : Rm → Rm
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Neural Networks
ReLU (Rectified Linear Unit) activation
ReLU(zj) = max{0, zj}
Filters anything below zero, and leaves unchanged anything above
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Neural Networks
Sigmoid (logistic) activation

σ(zj) = 1
(1+e−zj )

A continuous function bounded between 0 and 1
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Neural Networks

Application
The classification task assigns every input vector z ∈ Rn one out of m labels. The
regression task approximates a functional mapping from Rn to Rm

Classification Regression
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Verification
Objective
Verify algorithmically that the NN complies to some post-conditions on the outputs if some
pre-conditions on the input are met

Input bound (yellow) Output (green)
Unsafe zone(red)
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Verification
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Verification

Assumptions
Input I ⊂ Rn is bounded
Output O ⊂ Rm is also bounded

I Affine transformations of bounded sets are bounded sets
I f (z) = ReLU(z) is piecewise affine
I f (z) = σ(z) bounds the output on [0,1]

Conclusion
Pre and post-conditions represent n-dimensional space regions in which inputs and
outputs should be contained
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Abstract methods
Abstract domains
We abstract the network behavior by considering the transformation on the input domain,
considering the abstract domain 〈Rn〉 ⊂ 2Rn

of polytopes in Rn to abstract bounded sets
into polytopes

A concrete network operates a point-to-point mapping
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Abstract methods
Abstract domains
We abstract the network behavior by considering the transformation on the input domain,
considering the abstract domain 〈Rn〉 ⊂ 2Rn

of polytopes in Rn to abstract bounded sets
into polytopes

An abstract network maps space regions
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Abstraction definitions

Abstraction
Given a bounded set X ⊂ Rn an abstraction is a function α : 2Rn → 〈Rn〉
that maps X to a polytope P such that C(X ) ⊆ P

Concretization
Given a polytope P ∈ 〈Rn〉 a concretization is a function γ : 〈Rn〉 → 2Rn

that maps P to the set of points contained in it

Consistent abstraction
Given a mapping ν : Rn → Rm, a mapping ν̃ : 〈Rn〉 → 〈Rm〉, an abstraction α and a
concretization γ, ν̃ is a consistent abstraction of ν over an input set X exactly when
{ν(x)|x ∈ X} ⊆ γ(ν̃(α(X )))
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Abstraction definitions
Consistent abstraction (example)
Given a mapping ν : Rn → Rm, a mapping ν̃ : 〈Rn〉 → 〈Rm〉, an abstraction α and a
concretization γ, ν̃ is a consistent abstraction of ν over an input set X exactly when
{ν(x)|x ∈ X} ⊆ γ(ν̃(α(X )))

X ν(X)

α(X) Y

ν

ν~

γ(Y) ν(X)
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Example
Convex approximation
There are different cases for the input set X ⊂ R
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X is already convex and matches
the enclosing polytope
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Example
Convex approximation
There are different cases for the input set X ⊂ R
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Example
Convex approximation
There are different cases for the input set X ⊂ R
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Abstract representation

Generalized star set
Given a basis matrix V ∈ Rn×m, a point c ∈ Rn called center, and a predicate
R : Rm → {>,⊥}, a generalized star set (or just star ) is a tuple Θ = (c,V ,R).
The set of points represented by the star is

[[Θ]] ≡ {z ∈ Rn | z = Vx + c such that R(x1, . . . , xm) = >}

In practice
We consider stars where the predicate represents a polytope, i.e., R : Cx ≤ d .
This polytope in x depends on the basis matrix V
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Abstract representation
Star

[[Θ]] ≡ {z ∈ R2 | z = Vx + c such that Cx ≤ d}

Let x = {x0, x1} and Cx ≤ d =


x0 ≤ 1
−x0 ≤ 1
x1 ≤ 1
−x1 ≤ 1

Predicate

Predicate matrix C =


1 0
−1 0
0 1
0 −1

 and bias d =
[
1 1 1 1

]T
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Abstract representation
Identity basis

Basis matrix V1 =

[
1 0
0 1

]
, center c =

[
0
0

]

Different basis

Basis matrix V2 =

[
1 1
1 −1

]
, center c =

[
0
−1

]
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Activation functions abstraction

How to propagate the abstraction?
The different layers of a NN transform the abstract star

Linear (Fully Connected) layers perform affine transformations
Activation layers?

ReLU
Given the ReLU piecewise nature, we can either split the computation between the
negative part and the positive part — for each dimension! — or compute an abstract
over-approximation

Sigmoid
On the other hand, the logistic function can only be over-approximated by an appropriate
abstraction
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Running example
A simple 2D NN
We consider a simple bi-dimensional Fully Connected/ReLU network with two hidden
layers of two neurons each
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Running example
Fully Connected behavior
The linear (fully connected) layers transform the input set by means of shift, rotation and
scale operations
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Running example
ReLU behavior
Given the properties of the input set the ReLU behaves differently: if a ≥ 0, i.e., the set is
all positive then the ReLU is the identity function, whereas if b ≤ 0 the input is zeroed;
when a < 0 < b we can either split the results or over-approximate

a

a

a a

ab

b b b

ba
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Running example

Bounds evaluation
The lower and upper bounds ubj , lbj of the star along its j-th dimension are computed with
a linear-programming problem

max/min{zj = V[j , :]x + c[j]} (star basis)
s.t .
Cx ≤ d (star predicates)

Scalability issues
The linear programming problem scales with the dimension of the layers→ bottleneck
computing the bounds of large scale networks. In addition, abstracting ReLU layers
introduces further parameters
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Running example

Abstract input
Let us consider again the star presented before as the network input for our example
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Affine transformation

Layer 1 - Fully Connected

The first affine transformation with W =

[
1 1
1 −1

]
,b =

[
0
0

]
transforms the input star by

affecting only the basis matrix

V̂FC = WV =

[
1 1
1 −1

]
×
[
1 0
0 1

]
=

[
1 1
1 −1

]
ĉFC = Wc + b =

[
1 1
1 −1

]
×
[
0
0

]
+

[
0
0

]
=

[
0
0

]
3 2 1 0 1 2 3 4

z1

3

2

1

0

1

2

3

z 2

AbsFC_1
Complete
Over-approximate
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ReLU: exact computation

ReLU abstraction
The fine abstraction of the ReLU function is non-linear, so whenever lbj < 0 < ubj the
network splits as if the inputs were two: one less than 0 and another greater than 0
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ReLU: exact computation
Split along z1

Along the z1 axis the input polytope collapses on the negative part and remains
unchanged on the positive one
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ReLU: exact computation
Split along z1

This corresponds to imposing z1 ≤ 0 in the predicates and z1 = 0 in the basis for the
negative star, and z1 ≥ 0 in the predicates for the positive one
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
z1 ≤ 0→ x0 + x1 ≤ 0
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ReLU: exact computation
Split along z2 (1)
Along the z2 axis the result of the previous split either becomes a single point for the
negative part (z1−, z2−) or is cut (z1−, z2+)
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ReLU: exact computation
Split along z2 (2)
The same operation is performed on the positive output of the first split, with only
z1+, z2+ resulting in an actual polytope
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ReLU: exact computation

Starset growth
The number of stars produced by the exact computation is exponential in the worst case,
where each and every ReLU has to split

Predicates growth
Each new star adds a constraint (row) in the predicates matrix and the bias vector

Degenerate stars
Even if the exact computation produced 4 stars out of one, three of them are degenerate,
i.e., they don’t carry useful information. To prove whether a star is degenerate or not
could improve the algorithm, but is a difficult task
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ReLU: approximation
Neuron-level behaviour
We provide a coarse abstraction of the ReLU function by picturing a triangle limited by the
star bounds. This approximation — minimal area — enforces a smaller error w.r.t. other
techniques such as zonotopes and abstract domains
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ReLU: approximation

Star POV
From the Star point of view, we define an auxiliary variable xm+1 in order to express the
three constraints of the triangle in terms of the predicate variables
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ReLU: approximation

Star computation
The ReLU over-approximation introduces two variables and 6 constraints in the predicate
matrix, requiring to solve a total of 4 LPs

ĈReLU =



1 0 0 0
-1 0 0 0
0 1 0 0
0 -1 0 0
0 0 −1 0
1 1 −1 0
−0.5 −0.5 1 0

0 0 0 −1
1 −1 0 −1
−0.5 0.5 0 1


d̂ReLU =



1
1
1
1
0
0
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0
0
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ReLU: approximation

Starset growth
The approximation propagates always a single star in the whole network. On the other
hand, the price is paid in the outer approximation

Predicates growth
Each neuron adds 3 constraints (rows) in the predicates matrix and the bias vector, as
well as one extra variable. This impacts heavily on the LPs for bounds computation when
the number of neurons is huge

Approximation benefits
The complexity introduced by the approximation grows slower than the exact approach.
The major benefit is that the approximate method guarantees a sound verification with the
minimal area overhead
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